		710		N	latio	onal 5 Chemi	istrv					uc	Traf	ffic Li	ight
		JAB chem	Unit			and Drawir	-		bons	JAB chem		Lesson	Red	Amber	Green
1	A h	• san	ne gener	es is a family o al formula mical propert		pounds with							\odot	<u>(1)</u>	\odot
2		terns ar • Phy Iting & t • The bet	e often s vsical propositing personal ese chan ween th	seen in the phoperties incluoints increase ges in physica e molecules.	ysical de me e as tho al prop	properties of the malting points, boiling e size of molecule is perties are due the she strength of the i	g points ncrease strengt	s, solubility es for any ho h of the inte	mologou rmolecu	ıs series lar forces	;		(3)	<u>:</u>	(i)
3	Нус	drocarb	ons are	compounds co	ontaini	ing only hydrogen and are examples of	and car	bon atoms					(3)	<u></u>	©
4	Cor	npound • Alk npound • Alk	s contain anes and s contain enes are	ning only carb d cycloalkanes ning at least o e unsaturated	on-ca s are s ne car hydro	rbon single bonds aturated hydrocarl bon–carbon doubl carbons	are des oons e bond	cribed as sa	turated. ed as uns				3	<u>:</u>	3
5	bro	mine so Uns Sati	lution. aturated urated co	compounds de mpounds do no	colour ot deco	ated compound fro ise bromine solution lourise bromine solu	quickly	e.g. alkenes ckly e.g. alka	nes and c	ycloalkan	es		©	☺	③
6a		Full St	ructural	Formula	Н—	rawn as a full or a :	—н	H—(н 1 н-С-нн 1 C=C-С 1 Н	<u>'</u> —н			\odot	⊕	©
				ral Formula unds with:	CH	H ₃ CH ₂ CH(CH ₃)CH ₂ C	H ₃	CH ₂	=C(CH ₃)	CH ₃					
6b		sanma	ne moled 2- y belong	cular formula HH-C-HH-H -C-C-C-C H-H-H -methylpentar to different h H-C-C=C H-H-H propene C e different ph	I H - C- I H ne C ₆ H nomolo - H s ₃ H ₆ ysical	gous series e.g. all properties e.g. alk	HH-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-	HH-C-HH H C-C-C-C-C-IH H H Ipentane C ₆ I Ind cycloalkand Ind cycloalk	nnes	olution			(3)	①	(i)
						und, an isomer can cular formula.	be dra	wn.	T		_				
7	Н—	C ₄ H. H H - C = C - (н н С—С—н 	C ₄ H ₈ H H H H-C-C=C- H but-2-ene	н -С—н -	C_4H_8 $H \mapsto C + H \mapsto C + H \mapsto C + C + H \mapsto C + C + C + H \mapsto C + C + H \mapsto C + C + C + C + C + C + C + C + C + C$	H— H—	C ₄ H ₈ H H C—C—H C — C—H H H H H Clobutane	H—C—	C4H8 H -C-C-H H H yclopropane	_ !		(3)	①	(3)

	Nat5 Past Paper Question Bank JABchem															
Traffic	Traffic Lights Unit 2.1a Naming and Drawing Hydrocarbons															
Outcome	Outcome Original Specimen Paper Nat5 N															
047001110	<u>Paper</u>	<u>Paper</u>	2014	<u>2015</u>	<u>2016</u>	2017	2018	2019	2020	2021						
1	L7a	mc15 L7a	L9a			L9a	L16a(i)	L7a								
2			L9b					L5c(ii)								
3							L4a									
4							L9a(i)									
5	mc13			L3b(ii)		mc11	L9a(ii)	L5a								
6a		L10a			L8a		mc10									
6b		mc13		L12b		L9b		mc13								
7	mc12		L8b(ii)		mc12		mc11									

Nat5	Answer	% Correct	Reasoning
2016 MC 12	В	61	$\boxtimes A$ but-1-ene shown is exact same structure as right isomer at top of question $\boxtimes B$ same formula (C_4H_8) but different structure (methylpropene) $\boxtimes C$ cyclobutene C_4H_6 has a different formula from butene C_4H_8 $\boxtimes D$ pent-1,4-diene C_5H_8 has a different formula to butene C_4H_8
2017 MC 11	D	83	$\boxtimes A$ X is an alkene \therefore has $C=C$ double bond \therefore will decolourise bromine solution quickly $\boxtimes B$ Y is a cycloalkane \therefore no $C=C$ double bond \therefore does not decolourise bromine solution $\boxtimes C$ Y is a cycloalkane \therefore no $C=C$ double bond \therefore does not decolourise bromine solution $\boxtimes D$ X (alkene) will decolourise bromine and Y (cycloalkane) will not decolourise
2018 ^{MC} 10	D	-	C_9H_{20} structure drawn is the isomer 3,4-dimethylheptane $\boxtimes A$ C_9H_{20} structure is 2,4-dimethylheptane \therefore different isomer not same structure $\boxtimes B$ C_8H_{18} structure is 3,4-dimethylhexane \therefore different formula not same structure $\boxtimes C$ C_9H_{20} structure is 3,3-dimethylheptane \therefore different isomer not same structure $\boxtimes C$ C_9H_{20} structure is 3,4-dimethylheptane \therefore same formula and same structure
2018 MC 11	С	-	C_6H_{14} structure drawn is 2-methylpentane $\blacksquare A$ Cyclohexane C_6H_{12} has different formula so cannot be an isomer of C_6H_{14} . $\blacksquare B$ 2-methylpentane again but drawn different so cannot be an isomer. $\blacksquare C$ 3-methylpentane C_6H_{14} so same formula but different structure so is an isomer. $\blacksquare D$ 2-methylbutane C_5H_{12} has different formula so cannot be an isomer of C_6H_{14} .
2019 MC 13	D	-	 ⊠A Cyclopropane C₃H₆ has an isomer called propene C₃H₆ ⊠B But-1-ene C₄H₈ has isomers including but-2-ene C₄H₈ ⊠C Pentane C₅H₁₂ has isomers including 2-methylbutane C₅H₁₂. ∑D Ethene C₂H₄ has no isomers

Nat5	Answer	Reasoning									
		Correct C5H11OH diag	ram of:								
0044		pentan-1-ol	penta	n-2-ol	pentan-3-ol						
2014 8b(ii)	Any structure from:	2-methylbutan	-1-ol	2,2-din	nethylpropan-1-ol						
OD(II)		2-methylbutan	-2-ol	3-me	ethylbutan-2-ol						
		NB: diagram must be differedrawing of same 3-meth		•	-ol in question and not a						
		They have similar Pro	pane and butane	are both memb	pers of the alkane family and						
	<u> </u>	chemical properties have the same chemical properties. They have the same Propane is C_3H_8 and Butane is C_4H_{10}									
2014		The have the same									
9a	-	general formula			nysical properties						
		physical properties e.g.	bpt of propane	= -42°C and bpt	t of butane = -1°C						
			gfm propane C_3H_8 = 44g gfm butane C_4H_{10} = 58g								
2014		Butane C ₄ H ₁₀ has more	e carbons tl	nan propane	c C₃H8.						
9b	Answer to include:	The larger the molecu	ules the hig	her the boil	ling point.						
2015		Bromine solution is an ye	_								
3b(ii)	Bromine decolourises	The solution will decolourise as the bromine adds across the double bond. Only $C=C$ double bonds will decolourise bromine solution.									
		Isomer: same chemical for									
2015	Same formula but	Both structures have the		_	_						
12b	different structure	series. Structure A is a all cycloalkane with a ring of		C double bond	I and Structure B is a						
2016 8a	H H H CH3 H	C=C bond to make each carbon up to four bonds CH2C(CH	C=C bon	d to make each p to four bonds	H H H						
2017 9a	Same chemical properties Same general formula	Homologous series (e.	g. alkanes, d	alkenes, cyc	:loalkanes) have						
2017	isomers	same molecular f		differen [.]	structural formula						
9b		(formula	1)	<u> </u>	(structure)						
2018	carbon & hydrogen	A hydrocarbon is a compou	ınd containina	the elements	carbon and hydrogen only						
4 a		,									
2018	contains	Saturated: All bonds betw decolourise bromine soluti		re single bond	s and it does not						
9a(i)	C=C double bond	Unsaturated: At least one C=C double bond between carbons and will decolourise bromine solution quickly.									
2018	Duamina dalutian	Bromine Br_2 adds across a $C=C$ double bond by addition reaction. Each bromine joins across where the $C=C$ double bond used to be and leaves a $C-C$ single bond in its place.									
9a(ii)	Bromine solution decolourises			_	e bond in its place. colour) when it adds across the						
		C=C double bond.									
2018	Homologous Series	Homologous Series ar		•	ds that have similar						
16a(i)	•	chemical properties and a general formula.									

2019		romine adds across C=C double bonds and bromine is decolourised in the								
5α	Bromine decolourises	process.								
2019	Answer to include:	1 mark: Cyclopentene has weaker (forces of attraction)								
5c(ii)	Answer to include:	1 mark: Forces between molecules/intermolecular attractions mentioned								
2019 7 a	Same/similar chemical properties <u>and</u> same general formula.	Members of the same homologous series have the same/similar properties e.g. all alkenes will decolourise bromine solution quickly. The general formula must fit all members of the homologous series e.g. all alkanes fit the general formula C_nH_{2n+2} e.g. methane CH_4 , ethane C_2H_6 , propane C_3H_8 .								

Na	Nat5 Past Paper Question Bank JABchem															
Traffic	Unit 2.1 Naming and Drawing Hydrocarbons															
Outcome	<u>Int2</u>															
1	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	<u>2011</u>		2013	2014	2015
1													L5a			
2														L8b		
3																
4						mc11										
5		L5b(i)		L14a			mc16	L6a				L11c(i)	L8a		L8a(ii)	
6a										mc16						
6b							mc13									
7	L1b	mc11	mc10	mc9	mc16	mc10		mc16	mc15					mc10	L7a(iii)	mc16

Int2	Answer	% Correct	Reasoning
2001			$\blacksquare A$ pent-2-ene C_5H_{10} cannot be an isomer of 2,2-dimethylpropane C_5H_{12}
MC MC	D	89	\square B 2-methylbutane C_5H_{12} is an isomer of 2,2-dimethylpropane C_5H_{12}
11	В	07	\blacksquare C cyclopentane C_5H_{10} cannot be an isomer of 2,2-dimethylpropane C_5H_{12}
11			\blacksquare D 2,2-dimethylbutane C_6H_{14} cannot be an isomer of 2,2-dimethylpropane C_5H_{12}
2002			$lacktriangle$ A Molecule has formula C_6H_{14} and has a different formula from heptane C_7H_{16}
MC	В	73	$oxtimes$ B Both molecules have formula C_7H_{16} but are isomers with different structures
10	D	13	区 Molecule has formula C7H14 and has a different formula from heptane C7H16
10			☑D Molecule has formula C7H14 and has a different formula from heptane C7H16
2003			🗷 A ethane has only the one structure and has no isomers
MC	N	67	🗷 B ethene has only the one structure and has no isomers
9	U	07	区 propane has only the one structure and has no isomers
			☑D There are two structures for C ₃ H ₆ : propene (in question) and cyclopropane
2004			🗷 A molecule has same structure as molecule 1 so it not an isomer
MC .	B	58	$oxtimes$ B molecule has same formula C_4H_8 and is an isomer as it has different structure
16	D	50	区 molecule has formula C₄H ₆ so has different formula and is not a formula
10			☑D molecule has formula C4H6 so has different formula and is not a formula
2005			$lacksquare$ A C_5H_{10} molecule cannot be an isomer as it has a different formula to C_5H_{12}
MC MC		92	$oxtimes B$ C_5H_{10} molecule cannot be an isomer as it has a different formula to C_5H_{12}
10		フム	☑C Molecules are isomers as they have same formula but different structures
10			$oxdots D$ C_6H_{14} molecule cannot be an isomer as it has a different formula to C_5H_{12}
2005			☑A Molecule shown has C=C double bond so it is unsaturated
MC	В	66	☑B Molecule is unsaturated (C=C double bond) and an alcohol (contains -OH group)
11	D	OO	☑C Molecule shown has C=C double bond so it is unsaturated
11			🗷 D Molecule shown has hydroxyl group so it is an alcohol not a carboxylic acid

2006 Mc 13	A	43	☑A Both molecules are the same - Alkane with 5 carbons on main chain ☑B Although the molecules look different, both are alkanes with 5 carbons on main chain ☑C Isomers have same formula and different structures but they are the same ☑D Isotopes have same atomic number but different mass number											
2006 Mc 16	С	72	A Hydrocarbon X is but-1-ene not but-2-ene due to position of C=C double bond B Hydrocarbon X is unsaturated due to presence of C=C double bond C Hydrocarbon X decolourises bromine solution due to C=C double bond D Hydrocarbon X has formula is C4H8 so has general formula CnH2n											
2007 Mc 16	С	66	Glycerol has the structure: $ (\text{It is also called propane-1,2,3-triol}) \qquad \begin{array}{c} H & H & H \\ - & - & C & - & C & - & H \\ OH & OH & OH \end{array} $											
2008 Mc 15	В	73	$\blacksquare A$ Formula = C_6H_{14} \therefore Different no. of carbons so not an isomer of heptane C_7H_{16} $\blacksquare B$ Formula = C_7H_{16} \therefore an isomer of heptane C_7H_{16} $\blacksquare C$ Formula = C_7H_{14} \therefore Different no. of hydrogens so not an isomer of heptane C_7H_{16} $\blacksquare D$ Formula = C_7H_{14} \therefore Different no. of hydrogens so not an isomer of heptane C_7H_{16}											
2009 MC 16	A	85	Main Chain: Carbon 1 Carbon 2 Carbon 3 Carbon 4 Carbon 5 in brackets CH3 CH(CH3) CH(OH) C(CH3)3 CH3 side group Carbon 4 Carbon 5 in brackets CH3 CH(CH3) CH(OH) C(CH3)3											
2013 MC 10	С	90	Isomers have same molecular formula but different structural formula. Chemical in question has a formula of C_5H_{12} $\boxtimes A$ chemical has a formula of C_5H_{10} not an isomer because of different formula $\boxtimes B$ chemical has a formula of C_5H_{10} not an isomer because of different formula $\boxtimes C$ chemical has a formula of C_5H_{12} same formula but different structure $\boxtimes D$ chemical has a formula of C_6H_{14} not an isomer because of different formula											
2015 Mc 16	В	82	$\blacksquare A$ structure drawn a molecular formula of C_6H_{14} but heptane has formula C_7H_{16} $\blacksquare B$ structure drawn has formula C_7H_{16} and a different structure from heptane $\blacksquare C$ structure drawn a molecular formula of C_7H_{14} but heptane has formula C_7H_{16} $\blacksquare D$ structure drawn a molecular formula of C_6H_{12} but heptane has formula C_7H_{16}											

Int2	Answer	Reasoning								
2000 1b	H OHH	Isomers Same molecular formula e.g. C_3H_8O Different structural formula Propan-1-ol: Primary alcohol with -OH group attached to C_1 of 3 carbons Propan-2-ol: Secondary alcohol with -OH group attached to C_2 of 3 carbons								
2001 5b (i)	Gases produced are unsaturated	The products of cracking contain unsaturated compounds with $C=C$ double bonds.								
2003 14a	H C C H H H H H	Any correct structure of cyclohexene C_6H_{10}								
2007 6a	unsaturated bromine decolourises No change unsaturated	A C_6H_{14} No change saturated C_6H_{14} is hexane: no C=C double bonds B C_6H_{12} Bromine decolourises unsaturated C_6H_{12} is hexene: C=C double bond decolourises bromine C C_6H_{12} No change saturated C_6H_{12} is cyclohexane: no C=C double bonds D C_6H_{10} Bromine decolourises unsaturated C_6H_{10} is cyclohexene: C=C double bond decolourises Br2								
2011 11c(i)	colourless → orange/red	Colourless Bromine added from burette reacts with Limonene in flask and flask stays colourless Orange/Red When Limonene has completely reacted with bromine, bromine remains in the flask and flask is orange/red.								
2012 5a	Answer to include:	Family with similar chemical properties and same general formula								
2012 8a	Bromine decolourises No change Unsaturated	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
2013 8b	Increase in carbons increases the viscosity	The higher the number of carbons in a hydrocarbon, the higher the viscosity (thickness) of the hydrocarbon. The marble will take longer to fall through the more viscous liquids.								
2014 7a (iii)	Any C ₈ H ₁₈ structure other than 3-methylheptane. Structure must have 8 carbons 18 hydrogens 4 bonds per carbon 1 bond per hydrogen	All the isomers of octane are listed below. Be sure not to redraw 3-methylheptane again. octane 2-methylheptane 3-methylheptane 4-methylheptane 2,2-dimethylhexane 2,3-dimethylhexane 2,4-dimethylhexane 3,3-dimethylhexane 3,4-dimethylhexane 3-ethylhexane 2,3,4-trimethylpentane 2,2,3-trimethylpentane 2,3,3-trimethylpentane 3-ethyl-3-methylpentane 2,2,3,3-tetramethylbutane								
2014 8a (ii)	No C=C double bonds	Saturated hydrocarbons contain C - C single bonds in the carbon chain of the molecule. Unsaturated hydrocarbons contain C = C double bonds (or C \equiv C triple bonds) which are detected by the decolourisation of bromine solution.								

	Nat5 Past Paper Question Bank Traffic Lights Unit 2.1 Naming and Drawing Hydrocarbons JABCHEM															
Outcome		<u>2001</u> <u>Credit</u>														
1	18a	17a			20a					19b		22a				
2																
3																
4																
5		10a 10b										16a				
6a																
6b		10c			20d			16b(ii)	19b							
7																

SG Credit													
2000 <i>C</i>	family of compounds with	Homologous Series	Alkane	Alkene	Cycloalkane	Alcohol	Carboxylic Acids						
18a	similar chemical properties and a general formula	General Formula	CnH2n+2	CnH2n	CnH2n	C _n H _{2n+1} OH	C _n H _{2n+1} COOH						
2001 <i>C</i> 10a	no effect	C_5H_{12} is pentane. Alkanes do not decolourise bromine solution											
2001 <i>C</i> 10b	cyclohexane	C_6H_{12} can be hexene or cyclohexane. As bromine solution is not decolourised it cannot have $C=C$ double bonds \therefore B is cyclohexane											
2001 <i>C</i> 10c	isomers	• Ci	Isomers have the same formula but have different structures: • C is a cycloalkane with five carbons e.g. cyclopentane D is an alkene with 5 carbons e.g. pent-1-ene, pent-2-ene, etc.										
2001 <i>C</i>	a family of compounds with	Homologous Series	Alkane	Alkene	Cycloalkane	Alcohol	Carboxylic Acids						
17a	similar chemical properties and a general formula	General Formula	CnH2n+2	CnH2n	CnH2n	CnH2n+1OH	CnH2n+1COOH						
2004 <i>C</i> 20a	Family of compounds with similar chemical properties and a general formula		alkanes, alkenes, cycloalkanes, alcohols and carboxylic acid are all different homologous series with similar chemical properties and a general formula.										
2004 <i>c</i> 20d	A double bond saves two hydrogens in the formula. A cyclo-ring saves two hydrogens in the formula.												
2007 <i>C</i> 16b(ii)	isomers	Isomers h	nave <i>same</i> mo	lecular forn	nula but <i>diffe</i>	erent struct	rural formula						
2008 <i>c</i> 19b	isomers	Isomers h			ılar formula b ructural forr								
2009 <i>c</i> 19 b	Homologous series	propertie	s and a gener	ral formula:	compounds w								
2011 <i>C</i> 16a	Н Н—С—С=С—Н Н Н Н		ropane C_3H_6 H - C C-C-H H H urises bromine sontains C=C double										
2011 <i>C</i> 22a	Family of compounds with similar chemical properties	_			compounds w physical prop		chemical						

	Nat5 Past Paper Question Bank Traffic Lights Unit 2.1 Naming and Drawing Hydrocarbons JABCKEM															
Outcome		2001	2002	2003	2004 General	2005	2006	2007	2008	2009	2010					
1																
2																
3			10a			11a		9a								
4	9a			10c(i)												
5	9b						14b(ii)	14b(ii)		13b(i)		20c	20b	15b		
ба																
6b																
7																

SG General	Answer	Reasoning
2002 <i>G</i>	compound containing carbon & hydrogen only	Hydrocarbons are compounds which contain carbon and hydrogen only.
10a		Hydrocarbons often come in families e.g. alkanes, alkenes and cycloalkanes
2003 <i>G</i>	no C=C bonds	Saturated hydrocarbons have C-C single bonds in them and do not
10c(i)		decolourise bromine solution. Unsaturated hydrocarbons contain at least one C=C double bond which will decolourise bromine solution quickly.
2005 <i>G</i>	a compound of carbon and hydrogen only	Hydrocarbons contain the elements carbon + hydrogen only
11a		
2006 <i>G</i>	bromine solution is decolourised	bromine solution decolourises quickly in the presence of $C=C$
14b(ii)		double bonds. This indicated the substance being tested is unsaturated.
2007 <i>G</i>	Carbon and Hydrogen	Hydrocarbon: compounds which contain carbon and hydrogen only
9a		
2007 <i>G</i>	Contains C=C double bond or unsaturated	Unsaturated C=C double bonds decolourise bromine solution quickly
14b(ii)		
2009 <i>G</i>	C7H14	C7H14: heptene – alkene with general formula CnH2n
13b(ii)		C ₉ H ₂₀ : nonane - alkane with general formula C _n H _{2n+2}
2011 <i>G</i>	decolourises bromine solution	Alkenes are unsaturated. Unsaturated compounds decolourise bromine solution quickly as the bromine molecule adds across the C=C double bond.
20c		
2012 <i>G</i>	contains C=C double bond or unsaturated	Bromine solution is quickly decolourised by unsaturated compounds containing C=C double bonds.
20b		
2013	Bromine solution	Bromine solution will decolourise as the bromine Br2 molecule adds across
15b	decolourises	the $C=C$ double bond in propene.